
Developing Efficient Discrete Developing Efficient Discrete 

Simulations onSimulations on

MulticoreMulticore and GPU Architecturesand GPU Architectures

MABICAP project

Cagigas-Muñiz, D.; Diaz-del-Rio, F.; López-Torres, M.R.; 
Jiménez-Morales, F.; Guisado, J.L. Developing Efficient 
Discrete Simulations on Multicore and GPU Architectures. 
Electronics 2020, 9, 189. 

1



ObjectivesObjectives

� Parallel implementations for multicore
CPUs and for GPUs of the cellular 
automaton model of laser dynamics.

� Extract lessons that may be helpful for 
practitioners implementing discrete 
simulations of real systems in parallel 
architectures.

� Previous work in 2012: only CUDA 
(GPU) and sequential version (single 
core). Not optimized and not complete.

2



Laser Laser dynamicsdynamics

� It is used several matrixes to emulate electron an
photon life time (energy) in a grid. (The grid
represents a cut on a laser tube)

� Each cell can contain at least one electron and several
photons.

� In each time step new photons can be created due
to:
◦ ‘noise’ (noise photons creation rule)

◦ rules that take into account neighbours (stimulated emission 
rules).

� Electrons are bumped in each time step (pumping).

� Energy decreases in each time step (photon and 
electron decay)

3



Laser Laser dynamicsdynamics

Initialize system

Input data

for time step = 1 to maximum time step do

for each cell in the array do

Apply noise photons creation rule

Apply photon and electron decay and evolution of temporal variables

Apply pumping and stimulated emission rules

end for

Refresh value of c matrix with contents of c’ matrix

Calculate populations after this time step

Optional additional calculations on intermediate results (Shannon entropy)

end for

Final calculations

Output results

4

General algorithm:



Laser Laser dynamicsdynamics

5



ExperimentsExperiments

� Multiprocessor and OpenMP: two versions: 
optimized and not optimized. The optimized
version:

◦ Reduce cell data type: short int instead int.

◦ Loop splitting: electron and photons are 
computed in different loops due to cache 
constraints.

◦ Loop vectorizations: some branchs are 
transformed into functions. E.g. q=+p where p is
boolean

� Rand() was be changed with PCG library.

6



ExperimentsExperiments

� GPU and CUDA: 

◦ Each algorithm cell operation is a CUDA kernel: 
noise, decay, pumping and stimulated emission. 
There is also a shannon entropy kernel. 

◦ Syncronized kernel execution: each kernel must
wait the kernel before.

� Two tests:

◦ Geforce GTX 1050TI vs Core i9 9900k

◦ NVIDIA v100 vs Intel Xeon Platinum 8259CL (48 
cores, 96 HW threads) --» Executed in the cloud
(AWS)

7



ResultsResults

8



ResultsResults

9



ConclusionsConclusions

� It was pointed out in previous works that 
the speedups achieved with GPU when 
comparing to CPUs where x10 or above 
(sometimes even ×100 or x200) --» these 
distances are now significantly shortened 
(x3)

� Simulation by substituting the 
pseudorandom number generator by a 
different type of algorithm can speed up 
multicore processors.

� GPUs are always the best choice?

10


